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Gál and March have recently proposed a form of the single-particle kinetic
energy density in density functional theory in terms of the one-body
potential V(r) and the ground-state electron density n(r) generated thereby.
Here, with a minor modification of the GM form, examples are given for
(a) harmonic trapping and (b) a bare Coulomb potential. The case of the
He atom is also considered, via the Chandrasekhar variational wave
function. Finally, the use of the semiempirical fine-tuned Hartree–Fock n(r)
for spherical atoms due to Cordero et al. is briefly referred to.
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1. Introduction

Gál and March [1] have recently considered, via the virial theorem, forms of the

single-particle kinetic energy density, denoted below by tGM(r), of density functional

theory (DFT) [2]. One form these authors propose, which is a focal point below,

is that

tGMðrÞ ¼
1

2

�Ts

�nðrÞ
3nðrÞ þ r � rnðrÞ½ �, ð1Þ

where Ts is the total single-particle kinetic energy functional. Using the Euler

equation of DFT [2] in Equation (1), namely

�Ts

�nðrÞ
þ VðrÞ ¼ �, ð2Þ

where � is the constant chemical potential at every point in the inhomogeneous

electron liquid under consideration, one immediately has that

tGMðrÞ ¼
�� VðrÞ

2

� �
3nðrÞ þ r � rnðrÞ½ �: ð3Þ
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We turn next to illustrate the use of Equation (3) on two simple, but important

examples, when V(r) is (a) a harmonic trapping potential (1/2)kr2¼ (1/2)m!2r2,

of much current interest in the experiments on cold quantum Fermion vapours [3–5]

and (b) bare Coulomb confinement, which has played a significant role in obtaining

analytical insight into the exchange energy density �x(r) and exchange-only

potential Vx(r) in non-relativistic Ne-like atomic ions in the limit of large atomic

number Z [6,7].

2. Harmonic trapping

Minguzzi et al. [8] proved for an arbitrary number of closed shells generated by the

harmonic potential V(r)¼ (1/2)m!2r2 that the ground-state density satisfies the

differential equation

�h2

8m

@

@r
r2nþ ðMþ 2Þ�h!� VðrÞ½ �

@n

@r
þ
3

2

@V

@r
n ¼ 0 ð4Þ

for Mþ 1 closed shells. Combining Equation (4) with a result of Howard et al. [9]

that

@tL
@r
¼ �

3

2

@V

@r
n�

�h2

8m

@

@r
r2n, ð5Þ

one readily reaches the formula

t 0LðrÞ

n0ðrÞ
¼ �� VðrÞ ð6Þ

where tL ¼ �
Pocc

j  jr
2 j and �¼ (Mþ 2)�h!.

In Figure 1, we take the case of a single closed shell, i.e. M¼ 0. Then in atomic

units (m¼ 1, �h¼ 1, e¼ 1, 4��0¼ 1) with !¼ 1, we have the ground-state electron

density n(r) as

nðrÞ ¼ 2��3=2 expð�r2Þ: ð7Þ

Curve (a) of Figure 1 shows the conventional gradient form tg of kinetic energy

density given by the von Weizsäcker expression [10] for the case of a single-level

occupancy under discussion as

tg ¼
ðrnÞ2

8n
¼

1

2
r2nðrÞ, ð8Þ

the last part of Equation (8) following from Equation (7). Evidently, as curve (a)

displays, tg is zero at the origin r¼ 0, is everywhere positive, and integrates to Ts¼R
tg dr¼ (1/2)E¼ (3/2)�h!, or 3/2 in the units of this example.
Turning from tg in Equation (8) to tGM from Equation (3) with n given by

Equation (7), curve (b) of Figure 1 shows tGM for comparison with tg, both, of

course, yielding by volume integration the known single-particle kinetic energy

Ts¼ 3/2 a.u. cited above. To show that tGM is non-trivially different from tg, for

example the Laplacian form tL corresponding to the wave function definition
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� r2 differs from tg by

tg ¼ tL þ
1

4
r2n, ð9Þ

we also depict in curve (c) of Figure 1 the shape of r2n again using Equation (7). This

has a node at r ¼
ffiffiffiffiffiffiffiffi
3=2
p

, which coincides with the first node of tGM as seen in Figure 1.

Thus, tGM differs non-trivially from tg, though both reproduce the correct value of Ts.
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Figure 1. Plot of kinetic energy density functions against the distance from the centre of the
harmonic trapping potential for a system of two non interacting electrons. Curve (a) refers to
tg, curve (b) to tGM and curve (c) to the Laplacian of the electron density multiplied by the
factor �1/4.
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3. Closed shells generated by the bare Coulomb potential ZZe2/r

In the earlier work, the present authors [11] have proved the following result for the
derivative of tg, which is valid for an arbitrary number of closed shells generated by
V(r)¼�Ze2/r, namely, again in a.u.:

t0g ¼
1

8
n000 �

3

4r2
n0 �

3Z

2r2
n: ð10Þ

But for this Coulomb example, with e also set equal to unity, @V/@r¼Z/r2, and hence
from Equation (10) we have that

3

2

@V

@r

� �
n ¼

1

8
n000 �

3

4r2
n0 � t0g: ð11Þ

Evidently, by dividing both sides of Equation (3) by (3nþ rn0), and by differentiating
with respect to r, @V/@r can be removed from Equation (11), yielding a direct, if
somewhat cumbersome, relationship for this Coulombic example, between tg and
tGM, for any number of closed shells.

4. Example of helium atom

The DFT potential V(r) for He is related to the exact correlated ground-state
density n(r) by

r2n1=2 þ 2 I� VðrÞ½ �n1=2 ¼ 0, ð12Þ

which is equivalent to the usual von Weizsäcker [10] equation when written in terms
of n rather than the density amplitude n1/2 [12] appearing in Equation (12). I entering
Equation (12) is the exact non-relativistic ionisation potential of He. Again, by
constructing @V/@r from Equation (3) in terms of tGM and n, and from Equation (12)
in terms of n1/2, tGM and tg are related via the ground-state density of He. An
approximate analytic form for n has been obtained for He by Howard et al. [13] from
the Chandrasekhar variational wave function [14], and hence, by a straightforward
numerical calculation tg and tGM can be compared, though now to a good
approximation only because of the use of [14] for the ground-state wave function.

5. Conclusions and future directions

We have taken three examples to illustrate the application of the proposed kinetic
energy density in Equation (3), motivated by [1]. These are (a) harmonic trapping, (b)
bare Coulomb potential generating an arbitrary number of closed shells and (c) the
He atom characterised by an approximate analytic density n(r) [13] derived earlier
from the wave function proposed by Chandrasekhar [14]. In each case, contact can
be made between the well-established form tg of kinetic energy density and the form
(3) utilized here. As to the future direction, we first recommend the use of the
semiempirical fine-tuned Hartree–Fock density of Cordero et al. [15], which has been
shown to be of quantum Monte Carlo quality. Besides the, of course approximate,
ground-state electron density thereby made possible, the conventional kinetic
energy densities tg and tL can also be obtained for spherically symmetric atoms,
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following Amovilli et al. [16]. Second, we stress that the seeds of a formula having
resemblance to Equation (3) may be found in the study of Stoddart and March
[17,18]. These authors calculated to all orders, in perturbation theory, the
idempotent Dirac density matrix �s(r, r

0) when a potential V(r) was ‘switched on’
to an initially uniform free electron gas. In [17], a formula for tg was given in which a
term proportional to V(r) appeared, namely

tgðrÞ � t0 ¼ �VðrÞ�ðrÞ, ð13Þ

where t0 is the kinetic energy density of the homogeneous electron gas. Here, �(r) is
the series derived by Stoddart and March [17], namely

�ðrÞ ¼
X1
j¼1

j

jþ 1
nj, ð14Þ

where nj is O(Vj). March [19] obtained a closed expression for �(r) for an arbitrary
number of closed shells with harmonic trapping as

�ðrÞ ¼
3

2VðrÞ

Z r

nðsÞV 0ðsÞds�
n00ðrÞ

8VðrÞ
�

n0ðrÞ

4rVðrÞ
, ð15Þ

with V(r)¼ (1/2)kr2. This is readily shown to lead back to the correct result for tg
given when Equation (15) is inserted in Equation (13) for tg� t0, and then this is
differentiated with respect to r.

We can add the further example of the Coulomb field for �(r) to conclude this
work. This then reads

�ðrÞ ¼
3

2VðrÞ

Z r

nðsÞV 0ðsÞds�
n00ðrÞ

8VðrÞ
þ

3

4VðrÞ

Z r n0ðsÞ

s2
ds: ð16Þ

This has evident similarity to the harmonic result (15) for �(r), though the final terms
of Equations (15) and (16) differ in detail. It would, of course, be of considerable
interest for the future if the Stoddart and March series �(r) entering Equation (13)
tg� t0 could eventually be summed for an arbitrary potential V(r).
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